The Neuroscience Graduate Program (NGP) at UTMB established in 1981 was the first Ph.D. program in neuroscience in Texas. The rich interdisciplinary program of course work and research provides an internationally competitive education that enhances a trainee's ability to become a scholarly and productive contributor to our knowledge of nervous system function and disease mechanisms.
It is anticipated that our graduates will become researchers and/or teachers in the field of neuroscience in academic institutions, industry, biotechnology, or government. The program is designed to be rigorous but flexible and is explicitly multidisciplinary. Research can be done in areas ranging from molecules to excitable membranes to behavior, using preparations ranging from cell cultures to isolated ganglia to brain slices to intact nervous systems of invertebrates and vertebrates.
Students are exposed to a broad, integrated foundation of courses in biomedical sciences and to fundamental neurobiological concepts. They also gain exposure to modern experimental techniques: immunocytochemistry, live-cell imaging, electron, and confocal microscopy, nuclear magnetic resonance-based imaging; electrophysiological methods of extracellular recording and patch clamping; molecular, biochemical and pharmacological methods for identifying and characterizing drugs and drug targets, neurotransmitters, peptides, growth factors, receptors, chaperones, and other intracellular signaling molecules; immunological, cell culture, and a multitude of behavioral assays. Major areas of research strength in the program include neuroplasticity, learning, and memory; pain mechanisms, neural injury and brain trauma; drug abuse and addiction; neurodegenerative disorders (Alzheimer's, Parkinson's, ALS); other conditions and disorders affecting the nervous system.
Our goal is to graduate neuroscientists who have a broad base of experience with modern experimental skills and comprehensive knowledge background of the organization, structure, and functions of nervous systems and who will seek to explore cellular and molecular mechanisms of important nervous system functions and disorders.