The bioinformatics masters combine biotechnology, computer programming, and computational mathematics to prepare you to utilize and create technologies that will discover, treat, and cure a range of medical illnesses.
The MS degree in bioinformatics provides students with a strong foundation in biotechnology, computer programming, computational mathematics, statistics, and database management. Graduates are well-prepared for academia and careers in the biotechnology, bioinformatics, pharmaceutical, and vaccine industries.
In laboratory exercises and assignments, students learn to sequence DNA and use computer programs to analyze DNA sequences and predict molecular models.
Bioinformatics is a field that has been developing over the last thirty years. It is a discipline that represents a marriage between biotechnology and computer technologies and has evolved through the convergence of advances in each of these fields. Today bioinformatics is a field that encompasses all aspects of the application of computer technologies to biological data. Computers are used to organize, link, analyze, and visualize complex sets of biological data.
With the advent of high-throughput technologies such as Next Generation Sequencing and proteomics, bioinformatics has become essential to the biological sciences in general. In the past, laboratories were able to manage and analyze their experimental data in spreadsheets. Many research labs now require the expertise of dedicated bioinformatics core centers or their own in-house bioinformaticists.
Graduates of our programs have entered such laboratories, both in industry and academia, as bioinformaticists. Some have also gone on to leverage their biotechnology experiences as wet lab experimentalists themselves. The diversity of skills our students cultivate has given them access to a wide range of career choices.
Based on consultation with individuals within the industry nationwide, the job market is rich with opportunities for those who obtain a graduate degree in bioinformatics, particularly when coupled with research as thesis work. This research provides exposure to real-world problems—and their solutions—not otherwise attainable in an academic setting.